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ABSTRACT
It is well-known that the HVAC (heating, ventilation and air condi-
tioning) dominates electricity consumption in commercial build-
ings. Alongside, electricity prices are increasing in several nations
around the world, putting pressure on facility managers to reduce
the electricity consumption incurred in operating their HVAC and
buildings. In this paper, we focus on one of the core problems in
building operation, namely chiller sequencing for reducing HVAC
electricity consumption. Our contributions are threefold. First, we
make a case for why it is important to quantify the performance
profile of a chiller, namely coefficient of performance (COP), at run-
time, by developing a data-driven COP estimation methodology.
Second, we show that predicting COP accurately is a non-trivial
problem, requiring considerable computation time. To overcome
this barrier, we develop a dominant-graph based COP prediction
technique and a time-constrained chiller sequencing algorithm inte-
grating the COP predictions, which strikes a good balance between
electricity consumption reduction and ease of use for real-world
deployment. Finally, we evaluate the performance of our scheme
by applying it to real-world data, spanning 4 years, obtained from
multiple chillers across 3 large commercial buildings in Hong Kong.
The results show that our solution is able to save on average 21
MWh of electricity consumption in each of the 3 buildings, which
is an improvement of over 30% compared to the current mode of
operation of the chillers in the buildings. We offer our data-driven
chiller sequencing framework under time constraints as an effective
and practical mechanism for reducing the electricity consumption
associated with HVAC operation in commercial buildings.

CCS CONCEPTS
• Information systems → Data analytics; Process control sys-
tems; • Hardware → Power estimation and optimization; •
Applied computing→ Decision analysis;
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1 INTRODUCTION
Centralized chilled water based HVAC plants are commonly used
for cooling in large commercial buildings. These HVAC plants con-
sume anywhere between 40% and 70% of a building’s total electricity
consumption [1, 2], a vast majority of which can be attributed to the
chillers in the HVAC. In several nations around the world, the elec-
tricity bill paid by commercial buildings, which is dominated by the
energy consumption of the HVAC, is often in the top-three list of an
organization’s operating expenses [3]. This trend is putting upward
pressure on facility managers to improve the energy efficiency of
their buildings by means of reducing the electricity consumption
associated with HVAC operation.

Various techniques have been proposed in the literature for miti-
gating the energy impact of building HVAC. These include control-
ling the HVAC based on the spatio-temporal profile of occupancy
inside a building [4], pre-cooling a building in advance of expected
increase in occupancy [5], and incorporating renewables such as
solar panels and battery storage into the energy mix [6].

While all of these approaches have merit, in this paper, we focus
on the problem of chiller sequencing for reducing HVAC electricity
consumption in commercial buildings. Chiller sequencing refers to
operating the most efficient combination of chillers in a building at
real-time to meet the time-varying cooling demand. For example,
sequencing a building with two chillers [0.5, 0.7] implies that chiller
1 and chiller 2 are operating at 50% and 70% of their maximum rated
capacity, respectively. Thus, the sequencing problem is to allocate
the cooling load at any given time to the chillers in the most energy
efficient manner so that the overall cooling demand of the building
is satisfied while at the same time the electricity consumed by the
chillers is kept at a minimum [7].

Most prior work on chiller sequencing has focused on developing
techniques for predicting the cooling demand accurately. However,
the efficacy of chiller sequencing control also relies heavily on the
run-time performance profile of the chillers, namely the COP under
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different cooling load regimes. COP is a measure of the energy-
efficiency of a chiller and captures the cooling power that it can
output for a certain input power consumption. COP is typically
greater than 1; larger values implying better efficiency [8].

Despite advances in chiller performance profiling, they have re-
lied on developing fixed form thermodynamic models for obtaining
the COP given cooling load [9]. These models have limited value
in practice because COP is highly dependent on a variety of factors
such as the operating conditions, configuration dynamics, varying
cooling demands, degradation over time, weather and so on, mak-
ing it extremely difficult to capture the impact of these parameters
accurately in an analytical model. For e.g., it was recently shown
that over 12 months, there was a 20% reduction in the chilled water
flow rate, caused by excessive fouling that blocked the tubes in the
chiller condenser [10]. Using the COP from these fixed form models
therefore can introduce large errors, rendering them impractical for
use in the real-world. In practice, facility managers often perform
chiller sequencing using COP profiles obtained when the chillers
are first tested and commissioned during installation in a building,
called initial profiles. The initial profile considers cooling load as the
sole parameter. For reasons mentioned above, and detailed in the
rest of the paper, these initial profiles fail to capture the impact of
other real-world parameters, and thus are not accurate. It is evident
that robust estimation of the run-time COP of chillers is critical for
the success of any chiller sequencing technique.

Inspired by the advent of IoT deployment in buildings, and the
availability of IoT sensor data logged by modern building man-
agement systems (BMS), in this paper, we advocate a data-driven
COP profiling approach to facilitate chiller sequencing. Our COP
estimation relies on data collected by BMS. Specifically, our COP
profiling techniques are underpinned by BMS data obtained at 30
minute intervals from 17 chillers, over four years, across three
high-rise office buildings located in Hong Kong. We make three
important observations. First, existing thermodynamic models for
COP estimation can be inaccurate. For example, the run-time COP
of water-cooled chillers with constant-speed primary pumps (like
the ones considered in this paper) does not increase monotonically
with the cooling load, as is typically assumed in practice and found
in the initial profiles [11]. Second, there is a significant difference
between the COP obtained from the data-driven approach and ini-
tial profiles for different cooling loads. Third, data-driven profiling
increases the accuracy of chiller COP estimation, paving the way
for energy-efficient chiller sequencing in practice. In this context,
the contributions of this paper are:

• We demonstrate that there is a need for individualized COP
chiller performance profiling at run-time, which when done
effectively can be instrumental in reducing HVAC electricity
consumption. As discussed above, the resulting COP values
can vary substantially from that obtained via initial profiling.
The latter is often used for sequencing chillers in practice
today, undermining their energy efficiency considerably.
• We show that COP performance profiling using data-driven
techniques is a challenging problem, in terms of computa-
tion time. And so we propose a dominant-graph based COP
prediction technique along with a time-constrained chiller
sequencing control algorithm. We highlight that it strikes a

Figure 1: Towers of Pacific Place I, II and III in Hong Kong.

good balance between reducing electricity consumption for
chiller operation and ease of use for real-world deployment.
• We comprehensively evaluate the efficacy of our approach
by applying the solution on BMS data, spanning 4 years
(2012-2015), obtained from multiple chillers across 3 high-
rise office buildings in Hong Kong. The results show that our
chiller sequencing approach is able to save on average 21
MWh of electricity consumption in each of the 3 buildings,
which is an improvement of around 30% compared to the
current mode of operation of the chillers in the buildings.

Our proposed data-driven COP estimation technique and chiller
sequencing solution does not require any major capital expense
and uses data readily available from any modern BMS. The solution
recommends a chiller sequencing strategy that not only satisfies
a building’s cooling demand but also keeps the electricity con-
sumption to a minimum. We offer our approach as an attractive
mechanism for building facility managers to use who are on the
look out for simple and low-cost means for reducing the energy
and cost footprints of their buildings.

2 NEED FOR DATA DRIVEN COP PROFILING
2.1 Introduction to the Chiller Plants
Chiller plants are frequently used to generate cooling power for
office buildings. For instance, in three office towers located in Hong
Kong (Fig. 1), three chiller plants containing a total of 17 chillers
serve more than ten thousand people. Four year data, spanning
2012 through 2015, at 30 minute intervals, for these different chiller
models from Trane was collected from the BMS, as shown in Table 1.

Table 1: Chiller information in each building.
Building Name Regular Chiller Backup Chiller Vendor
Pacific Place I 4 × CVHG1100 2 × CVHE370 6 × Trane
Pacific Place II 3 × CDHG2250 2 × CVHG780 5 × Trane
Pacific Place III 4 × CVGF500 2 × CVGF500 6 × Trane
Total Number 11 6 17

In commercial buildings, sequencing of chillers is performed to
keep the electricity consumed for meeting a certain cooling demand
to a minimum. It follows two steps, i.e. Sequence Determination
and Feedback Control, and they work as follows. When a cooling
demand D arrives, the HVAC plant needs to determine the set of
chillers that need to be active and the total cooling load Q > D to
support the demand (Sequence Determination). The HVAC plant



Data driven Chiller Sequencing in Commercial Buildings e-Energy ’18, June 12–15, 2018, Karlsruhe, Germany

then needs to adjust the cooling load of each (active) chiller until
the cumulative load of Q is attained (Feedback Control).

2.2 COP Computation
Chiller sequencing relies heavily on the energy-efficiency of the
chillers. Clearly, electricity consumption increases as a function of
the cooling load. Note that the amount of electricity consumed by a
chiller is not only determined byQ but also by its energy-efficiency.
Intuitively, if this efficiency is low (e.g. due to poor maintenance),
then more electricity will be consumed to support a required cool-
ing demand. It is therefore of paramount importance to quantify
the energy-efficiency of a chiller, which is measured by its COP,
determined as follows.

The cooling load of a HVAC plant at a given time is the sum
of the cooling load Qi over all chillers i , i.e., Q =

∑
i Qi , where

Qi = ci × mi × ∆T i . Here, ci is the thermal capacity of water
(kJ/kg◦C), mi is the chilled water mass flow rate (kg/s) and ∆T i
is the temperature difference between the returned and supplied
chilled water (◦C) [12]. All these quantities are logged by our BMS.

The COP of chiller i to support cooling loadQi is given byQi/Ei ,
where Ei is the electrical power consumed by chiller i to deliver
the required amount of cooling. In practice, after a HVAC plant is
installed in a building, there is a commissioning phase wherein a set
of cooling loads is tested to ascertain the performance of the chillers.
Following each test, values of Q and E are recorded which enable
the facility manager to determine the corresponding COP profiles
for the chillers. Once in production, certain statistical averaging
techniques are used in the ensuing short period of operation to
update the COP under different cooling loads [13, 14].

2.3 Observation of Significant COP Variation
Reliable chiller sequencing depends on the COP across all the load-
ing conditions for chiller i . However, when we communicated with
facility managers and applied the above computation on the histor-
ical data retrieved from the BMS, we learned and confirmed that
not only does the COP degrade over time and raise after mainte-
nance, which is well-known, but the COP fluctuates markedly over
different cooling loads and environmental conditions.

To be specific, we first plot the average COPs as a function of the
cooling loads in Fig. 2. We picked the first regular chiller from each
building. It can be seen that these chillers often operate between
40% and 80% load, and their COP fluctuates somewhat randomly
between zero and eight. The COP values for other loads are missing.
For the same chillers, we plot in Fig. 3 the variation in their COP (i.e.
difference between max and min) under different loading regimes,
and note that there is a large fluctuation even for a given load. For
e.g., COP for chiller 1 varies between 5.7 and 8.2 for 70% load, and
between 1.8 to 8.3 for 60% load. This is because the chiller COP
in practice is highly dependent on a variety of factors. We also
observe from the data that if we classify the COPs at 5% cooling
load increments, then more than 40% of the COPs are missing.

Chillers are complex systems. The COP fluctuation observed
above is the result of thermodynamic processes under changing
environmental conditions and configurations of the local building
context, as well as the impact of other parameters such as chiller
degradation and exposure to different seasons/weather. These fac-
tors are exceedingly difficult to capture within an analytical model.
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Figure 2: Average COP for different chillers and loads.
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Figure 3: COP Variation for different chillers and loads.

Table 2: Example of a 10 × 5 updated profile on 2015.12.31 in
Pacific Place II, with out-of-date entries discarded.
Load Chiller 1 Chiller 2 Chiller 3 Chiller 4 Chiller 5
50% 7.4 - - 7.6 7.0
55% - - - - -
60% 6.4 7.1 4.7 6.9 -
65% - - - - -
70% 7.3 5.6 7.2 - -
75% - - - - -
80% - 6.9 5.4 - -
85% - - - - -
90% - - 7.0 - 6.6
95% - - - - -

Data-driven techniques can thus play a crucial role in accurate COP
prediction for improved chiller sequencing in the real world. For
interested readers, a further discussion on the possible benefit of
accurate COP prediction is available in Appendix A.

3 OVERVIEW OF TIME-CONSTRAINED
DATA-DRIVEN CHILLER SEQUENCING
(T-DCS) FRAMEWORK

In this section, we describe our solution framework for the data-
driven chiller sequencing problem. The framework comprises three
steps. An overview of each of these steps is described next.

3.1 T-DCS Problem Definition
1. The Data-driven COP Prediction (DPP) Sub-Problem. Our
idea is to develop individualized COP for each chiller by applying
machine learning techniques using historical chiller data. A pri-
vate cloud is established to store the historical data from the BMS.
When a cooling demand D arrives, the cloud can perform chiller
sequencing assisted by our data-driven COP prediction schemes.
To this end, we first introduce the Data-driven COP Prediction
Sub-Problem.

Formal definition of DPP Sub-Problem: Given the current
prediction task, infer the COP profileCOP whichminimizes the pre-
diction loss, i.e., 1/T ∑

t<T | |Ft (Xt ,W )−COPt | |2, whereX denotes
the features at time t of total time T ;COPt denotes the predicted
COP for all chillers at time t ; F (·) denotes the learning and predic-
tion model andW denotes its parameters.

2. The T-DCS Problem. The next step is to determine the opti-
mal sequencing of chillers. To do so, one needs to be wary of the
following: (1) The cooling demand changes over time, so chiller
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Figure 4: Framework of Data-driven Chiller Sequencing.

sequencing must be performed repeatedly in order to continuously
meet the varying cooling demand. The common practice is to trigger
chiller sequencing in a periodic manner [15]. (2) To ensure cooling
performance, chiller sequencing needs time for feedback control un-
til the system regains stability when switching from one sequence
to another. There is also a minimum start-stop-start time (called
deadband) for every chiller. (3) The chiller sequencing for each
period must be completed before the start of the next sequencing
period. Otherwise, the system can be unstable and return inaccurate
data which can be detrimental to subsequent COP prediction and
sequencing operations, as well as for the overall performance of
the chillers. Due to the above issues, we define the term deadline
TD as the total time length of one chiller sequencing operation,
including the computation time and the mechanical switching time,
computed considering both the periodic interval tP and mechanical
switching time tM , e.g., TD = min(tP , tM ).

Formal definition of T-DCS Problem: Given cooling demand
D, deadlineTD , historical COP labelsCOP , the targeted and histor-
ical feature values Xc ,X , our objective is to find a chiller sequence
Q = {Qi } which minimizes the total energy consumption E. The
final solution should satisfy the cooling demand, i.e.,

∑
i Qi > D

and the total needed time T is within the deadline TD , i.e., T ≤ TD .

3.2 Solution Framework for T-DCS Problem
To solve the T-DCS problem, we propose the data-driven chiller
sequencing framework, as shown in Fig. 4. The framework contains
three main components: (1) Time-constrained Data-driven COP
Prediction, (2) Sequencing Determination and (3) Feedback Control.

The Time-constrained Data-driven COP Prediction takes the
historical data X , historical COP labels COP , deadline TD as in-
put and generates the COP prediction result within the deadline.
Then, using the predicted COP and cooling demandD, Sequencing
Determination outputs the optimal chiller sequence and Feedback
Control ensures the successful execution of the sequencing in the
local HVAC plant. For simplicity, we omit the detailed designs of
the Sequencing Determination and Feedback Control components.
In the following sections, we focus on (1) Data-driven COP Predic-
tion for the DPP Sub-Problem (Section 4) and (2) Time-constrained
Data-driven COP Prediction for the T-DCS Problem (Section 5).

4 DATA-DRIVEN COP PREDICTION FOR DPP
To solve the DPP Sub-Problem outlined in Section 3.1, we develop an
approach involving two steps: Domain-assisted Feature Engineering
and Clustered Multi-task Learning, as described next.

4.1 Domain-assisted Feature Engineering
In industry domain, there is usually no luxury to have enormous
data where a model can be trained to automatically eliminate irrel-
evant features. As such the first challenge is to select the proper
feature set for chiller performance profiling. Our feature engineer-
ing uses domain knowledge to create features relevant to the prob-
lem at hand. The understanding includes the influence of external
environmental conditions and the influence of inner mechanical
factors associated with the chillers. We list our features in Table 3.

Temporal Features. First, we exploit the seasonality and the
age of the chillers (in terms of days) as the temporal features. Intu-
itively, the chiller demands exhibit distinctive temporal character-
istics: 1) cooling loads of chillers are different in different seasons,
especially summer and winter, which leads to varying performance
degradation; 2) as chillers age, its performance gradually degrades
as well [10].

Meteorological Features. Second, we know that meteorologi-
cal information such as temperature and weather drive the cooling
demand imposed on the chillers. For example, a higher outdoor
temperature requires more cooling power to ensure a comfortable
room. This meteorological factor would affect the chiller mode and
thus the chiller performance.

Mechanical Features. Finally, mechanical features are used
to capture the chiller characteristics. The model type, building,
operating power, water temperature difference, flow rate and the
recent cooling load are important features. The cooling load is the
amount of heat energy that would need to be removed from a space
to maintain the temperature within an acceptable range. In practice,
cooling loads are handled by air-conditioning equipment of chillers,
which reflects the amount of work that chillers provide, and thus
significantly impacts chiller degradation.

4.2 Clustered Multi-task Learning
Another challenge we face is the sparsity of the performance profile.
Reliable sequencing requires the COP for all chiller loads. However,
as shown in the Table 2, it is common for chillers to run on merely
a small distinct set of loads, which leaves a sparse profile for train-
ing and prediction. The COP corresponding to the empty loads is
difficult to infer reliably with little training data.

A natural way to solve this sparse problem is to infer the val-
ues using other non-empty ones. However, simply replacing with
neighboring non-empty entries can cause significant errors. For
example, in Table 2, we see that even for the same Chiller 3, re-
placing the COP of 80% with 90% leads to a relative error of 29.63%.
That is because, at the time when these COPs are updated, exter-
nal environment (e.g., meteorological factors) and inner conditions
(e.g., temporal and mechanical factors) can be different, which leads
to different thermodynamic processes of operation, resulting in
different COPs. In other words, for different entries, different model
parameters must be used to capture the underlying thermodynamic
processes, i.e., we need to train one model for each entry, while
at the same time exploit the benefits that come with (potentially)
more information being present in larger training data sets.

Specifically, our idea here is to learn from not only the training
data available for this single entry, but also learn from training
data present in other pertinent contexts, e.g., cases with similar
temporal, meteorological and mechanical conditions. To this end,



Data driven Chiller Sequencing in Commercial Buildings e-Energy ’18, June 12–15, 2018, Karlsruhe, Germany

Table 3: The description of features.
Feature Type Feature Description

Temporal Season The season which the time interval is in
Age of chiller The number of days that the chillers have been working

Meteorological Weather Condition The description of weather condition in a time interval
Outdoor Temperature The outdoor temperature measured by Celsius in a time interval

Mechanical

Model Type The model of the operating chiller
Building The building that the operating chiller is deployed in

Operating Power The power measured by kilowatts for the operating chiller
Water Mass Flow Rate The mass of water flowing per second, measured by kg/s

Water Temperature Difference The difference between the returned and supplied chilled water temperature
Latest Cooling Load The last recored cooling load assigned on this chiller

we apply Clustered Multi-Task Learning (CMTL) approach [16]. The
COP prediction on an entry is called a prediction task in our paper.
For each entry, the prediction task collects training data from similar
contexts. CMTL is suitable for our multi-task and sparse condition,
i.e., we not only need to develop different model parameters for
each entry, but also need to share knowledge, e.g., training samples,
among these entries. The prediction results of different learning
methods are available in Appendix B.

5 TIME-CONSTRAINED DATA-DRIVEN COP
PREDICTION FOR T-DCS

In the previous section, we described a solution for the Data-driven
COP Prediction (DPP) sub-problem. However, the solution method
cannot be directly applied in practice: (1) owing to the time-complexity
associated with the prediction technique, which is computationally
expensive. (2) This is exacerbated by the fact that data-driven pre-
diction must be conducted in an on-line manner due to the sparsity
issue, forcing the prediction model to be updated frequently to
account for the time-varying nature of the cooling demand and
change in operating conditions. To ensure high performance of our
model, in this paper we update its parameters each time before
sequencing is performed. (3) Finally, there is often a time constraint
for each chiller sequencing operation, as mentioned earlier. Here is
an example of the above issues: predicting the COP for each entry
in Table 2 (i.e. for a given chiller and a cooling load) takes about
20 minutes using AdaBoost [500 trees] for a TB-level dataset on a
private cloud with a 16-core CPU and 12 GB memory. So predicting
the COP for the 50 entries in Table 2 would require 50 × 20 = 1000
minutes = 16.67 hours, which is significantly longer than the typical
chiller sequencing period (of two hours [15]), and thus cannot be
accomplished before the deadline.

A natural way to solve this problem is to provide higher com-
putation capacity to finish the COP prediction before the deadline,
but this will incur considerable costs. For our example, for a service
provider of BMS in charge of 10 buildings, finishing our proposed
DPP-based Chiller Sequencing (DCS) within the typical chiller se-
quencing period of two hours requires 87 m4.xlarge instances and
10-TB General Purpose SSD (gp2) volume on Amazon Web Service
(AWS), for which the total annual price is $123, 975 (m4.xlarge)
+$14, 746 (gp2)= $138, 721.

In this paper, we propose to solve this problem by reducing the
computation workload processed in each period, by only conduct-
ing COP prediction with the expensive learning model (AdaBoost
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Figure 6: The probability of becoming best operation for dif-
ferent entries (Chiller 4 and 5 are backup chillers).

[500 Trees]) for a subset of the entries in Table 2, and using an
efficient but less accurate learning model (Linear Regression) for
the remaining entries. The question is how to decide which entries
should be processed with the expensive learning model, in order
to maximize the overall optimality of our DCS approach under the
time constraint.

Fig. 5 shows the electricity consumption of data-driven sequenc-
ing with 40% and 80% randomly discarded entries to be predicted
with the expensive learning model (while the remaining is pre-
dicted with the efficient model). We see a 13.21% and 25.63% higher
electricity consumption, which eliminate 27.80% and 53.95% of our
maximum potential saving, respectively. In the following, we will
show that by carefully selecting the entries to be processed with
the expensive learning model, the gain of our approach can be
significantly improved under the time constraint.

5.1 Implementation Overview
The key observation of our approach is that, while in principle
all COP entries may be selected to form the chiller sequencing, in
practice only a small subset of them are frequently selected in the
optimal sequence. The historical best operations can be computed
with the sequencing optimization based on the ground truth of COP
of 1460 days from 2012 to 2015. Then we can count the number of
cases for each entry to be selected as the best operation and thus
obtain the probability to become optimal. For example, if an entry
is selected in 100 days as the best operation over the total 1460
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Table 4: The description of factors to decide the priority.
Factor Type Factor Description

Mechanical Cooling Load The cooling power that an operation is supposed to provide
Electricity Consumption The amount of electricity that a sequencing would require for a period of time, e.g., one hour

Statistical Past Success The number of cases that a sequencing is selected in the optimal solution in the past
Prediction Accuracy The similarity between the predicted COP and the real COP for a given entry in the past

days, its probability to become optimal is computed as 100 / 1460
= 6.84%. Figure 6 shows the probability for different entries to be
selected as the best operation in the whole year 2015 with a model
trained with historical data of 2012-2014. The regular chillers often
operate between load 50% and 80%, and sometimes operate on 0%
load (switched off). The backup chillers 4 and 5 are seldom used
and almost always remain on 0% load.

Intuitively, one should prioritize the entries, which is to order
them according to the possibility for them to be selected as the op-
timal operation, and apply the expensive learning model to higher-
priority entries first, until the end of the period. However, the
possibility for an entry to be selected also changes over time, so
the priority should also be adjusted dynamically. In Section 5.2, we
will present how to decide this priority in detail.

Based on the above observations, we propose the Time-Constrained
DCS (T-DCS) approach, the pseudo-code for which is shown in Al-
gorithm 1. In each period, we first predict the COP of each entry by
Linear Regression (line 2), used as their initial profiles. Second, we
calculate the priority ordering of the entries in the current period
jointly using multiple factors (line 3, which will be explained in
detail in Section 5.2). Then we iteratively update the profiles of the
entries using the expensive COP prediction model (line 5), accord-
ing to the priority of the entries, until the available computation
time expires. Finally, the optimal sequencing (line 7) is selected
based on the up-to-date COP. Note that the stop condition of line 4
does not consider the computation time for selecting the optimal
sequencing, because it can be ignored compared to the duration of
the COP prediction procedure.

Algorithm 1 Time-Constrained DCS (T-DCS)

1: S← possible sequencing, D ← cooling demand
2: P ← LinearRegression() ▷ Fill all entries with initial values.
3: S′ ← JointPriorityOrdering(S)
4: while not yet reach the deadline do
5: P ← ExpensiveCOPPrediction(S’)
6: end while
7: S ← SelectOptimalSequencing(D,P)
8: return S

5.2 Joint Priority Ordering
To find the priority of entries for prediction, we first select Factors to
decide the entry priority. With the Historical priority determination
showing the priority of entries in the similar situations of the past,
we develop the Joint score and priority determination to obtain the
final priority of the entry.

Example: Referring to Table 2, assume we have two entries for
Chiller 1 COP. The first corresponding to Chiller 1 running at 55%
load (denoted as Entry 1) and the second corresponding to Chiller 1
running at 80% load (denoted as Entry 2). There could me multiple

sequences that include Entry 1, for e.g. the loads for the five chillers
being (55%, 60%, 60%, 60%, 60%), (55%, 70%, 70%, 75%, 70%), and so
on. We denote these sequences as Sequence 1, Sequence 2, etc. Let
Prob. 1 and Prob. 2 denote the probabilities of Sequences 1 and 2
being selected as the optimal sequence, respectively (probability
computed as described in Section 5.1). The higher the probability is
for a sequence, the more likely that it will be selected as the optimal
sequence (in turn increasing the ranking or priority of the entries
in the sequence). We denote the priority of Entry 1 as Pri. 1, which
is computed as Pri. 1 = 1 - Prob. 1. Similarly for Pri. 2. The lower
the priority score the higher is its importance. Assuming Prob. 1 =
0.2 and Prob. 2 = 0.8, then Entry 2 will be prioritized above Entry 1
because Pri. 2 = 0.2 < Pri. 1 = 0.8.

1. Factors to Decide the Entry Priority. To decide the entry pri-
ority, we select several important factors which help to indicate
the probability of entries to be selected in the optimal solution, as
summarized in Table 4. These factors fall into two categories: Me-
chanical Factors and Statistical Factors. In the following, we explain
these factors in detail.

Mechanical Factors reflect the mechanical performance of a
chiller operation. They directly affect the possibility for a chiller
operation to be optimal. We consider two mechanical factors:

• Cooling Load, which is a clearly important factor as the
total cooling load of the solution must meet the cooling
demand.
• Electricity Consumption over a period under the corre-
sponding cooling load and with the average COP value of the
past period. This is an important factor because our objective
is to minimize the electricity consumption.

Statistical factors reflect the performance of a chiller operation
in the statistical view over the historical data. In particular, we
consider the following two factors in this category:

• Past Success refers to the number of cases that an entry is
selected in the optimal solution in the past. In general, if the
chiller status, configuration, and environment do not change
too much, a chiller operation that works well in the past will
likely work well in the current period.
• Prediction Accuracy is the average similarity between the
predicted performance profile and the real performance pro-
file for a given operation in the past. This is also an important
factor since an accurate prediction can reduce the possibility
of failure in meeting the cooling demand, and thus decreases
the probability to launch the energy-inefficient protecting
process using backup chillers.

Note that the weight of these factors in the final decision of the
entry priority may be different under different cooling demands.
Due to page limitation, we put the discussion of the priority for
each factor under different cooling demands in Appendix C.
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Figure 7: Minimum electricity consumption as a function of
the number of searched entries ranked by different factors.

Figure 7 shows minimum electricity consumption with the his-
torical data in the past four years, with respect to the number of
entries visited in the searching procedure using the priority decided
by each of the above four factors. We can see from the figure that
prioritizing the entries by Past Success and Prediction Accuracy
(in the descending order) reduces about 90% of the search space to
reach the optimal solution, and prioritizing the entries by Cooling
Load and Electricity Consumption (in the ascending order) reduces
about 70% of the search space.

2. Historical Priority Determination. With above factors for
each entry, we can learn the priority of entries from the past data.
Basically, the same entry works well for similar conditions in the
past can be useful in the present. In the following we start by
deciding the priority of the values of each factor r tk for the past
data, which are used to decide the priority in the present.

In general, the more important a sequence is, the more important
its entries can be. With such an idea, the priority of the entries is
then decided by the priority of the entries’ sequences in which
they are a part of (as given in the example above). Two types of
relationships are used for priority decision.
• DominantRelationship compares entries used in different
sequences. These entries are clearly comparable because
their priorities can be inferred according to the priority of
their respective sequences, which can be obtained according
to the electricity consumption objective and the cooling
demand constraint with the past data.
• Cooperative Relationship compares entries used in the
same sequence. We collect such cooperative entries in a set
layer, where the entries may not be clearly comparable.

Accordingly, we apply the Dominant Graph (DG) [17] for the
relationship modeling, which treats the two types of relationships
differentially, i.e., the dominant relationship is more important for
priority decision than the cooperative one. Two entries having a
dominant relationship are ordered and directly linked in DG. The
entries in the same layer can be ordered according to the number of
cases when it is used for sequencing which meets cooling demand.
Then we decide the best priority COPtec of the entries with the
traveler algorithm in Dominant Graph [17]. 1 Note that such a
historical priority of entries should not be directly applied as the
current priority, due to the changing COPs and cooling demands.

Finally, we obtain the historical priority r tk of the four factors
for all historical time instances: r tk = [COP

t
i .rk ],∀COP ti ∈ COPtec ,

1An entry can be used by multiple candidate sequences and should not be updated
repeatedly using the same model in the sequencing decision because the result will be
the same. In one sequencing decision, we simply skip the update of an entry if it has
been updated already.

where r tk denote the historical priority of the factors for a past time
instant t and r tki ∈ r

t
k denote the ith value of r tk . With the historical

priority r tk , the score s
j
k can be inferred for each factor k of entry

j. Basically, the higher the priority of an entry is in the past, the
higher is its score in the present. 2

3. Joint Score and Priority Determination. To jointly consider
the dynamic priorities of different factors, we also compute the
joint score of an entry using a weighted sum of these scores s jk . The
joint scoring function F (j) for entry j is defined as

F (j) =
K∑
k

M
j
ks

j
k .

whereM j
k denotes the weight of the kth factor of entry j.

The weight of each factor is proportional to the similarity be-
tween its current value and the most similar value in the past time
instances t ′ ∈ T ′. More specifically, for factor k , we compute the
average minimum distancemj

k between the current value COPj .rk
and the most similar value r t

′

ki of the same factor for t ′ ∈ T ′.

m
j
k =

1
|T ′ |

∑
t ′∈T ′

MinDistancei< |r t ′k |
(r t ′ki ,COPj .rk ),∀k .

To avoid the noise from the different value range of the factors,
the final weight M j

k is also normalized across the distancemj
k of

k factors, i.e., M j
k =

max(m j )−m j
k

max(m j )−min(m j ) ,∀k . Finally, the priority is
determined by ranking the entries with the joint score.

For interested readers, a brief evaluation of joint priority ordering
is available in Appendix D.

6 PERFORMANCE EVALUATION
Experimental Setting. The total data collected from the BMS is
more than 1 TB. We configure a private cloud to process the data for
our experiments, with 16 cores of 2.6GHz CPU and a total memory
of 64GB. We train the models with three-year data and predict
with one-year data, which is a common setting in time-series data
mining [18] and multi-task learning [19].

Baselines. To make the COP prediction, we employ the follow-
ing state-of-the-art models as baselines.

• Initial Profiling Model (IPM) predicts the COP using the
initial profile of chillers under different loads.
• Thermodynamic Model (TDM) predicts the COP using
pre-calibrated thermodynamic model. Thermodynamic mod-
els [9] capture the thermodynamic process of chillers and try
to obtain the chiller COP with fixed form given the chiller
loading.
• Data-driven COP Prediction Model (DPP) predicts the
COP by the data-driven approach which learns the model
with historical data samples, whereDPP-Ada denotes the ap-
proach using AdaBoost Regression as learning model; DPP-
SVR denotes the approach using SVM Regression.

2Due to page limitations, the discussion of scoring under different cooling demands
can be found in Appendix C.
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• Time-constrainedData-drivenProfilingModel (T-DPP)
predicts the COP by data-driven approach under time con-
straints. As for the default approach, we adopt our proposed
Joint Priority Ordering method to order entries.

To leverage the estimated COP, we employ the following state-
of-the-art sequencing models as baselines.

(1) Predefined Sequencing (PS) conducts sequencing with
predefined prediction model and starts backup chillers when
it fails to meet the cooling demand [20, 21]. We adopt Ther-
modynamic Model as default predefined prediction model
instead of Initial Profiling Model because it performs better.

(2) Data-drivenChiller Sequencing (DCS) conducts sequenc-
ing with DPP and predicts all profiles without considering
any time-constraint. We adopt the most accurate DPP-Ada
as default DPP model and use backup chiller for sequencing.

(3) Time-constrained Data-driven Chiller Sequencing (T-
DCS) conducts chiller sequencing with DPP under time con-
straint.We adopt our Joint Priority Orderingmethod to select
entries and start backup chillers when necessary.

Evaluation Metrics. For a sequencing method, the ability to
provide credible energy saving is crucial to all stakeholders. Elec-
tricity is always the first concern, and we measure the Average
Electricity Consumption (AvgEC), which measures the average
electricity used by all sequencing operations on one day where all
time instances in one day is denoted by T and each sequencing
is conducted at time t ∈ T . Let Li denote the maximum cooling
capacity of chiller i < n. Formally,

AvдEC =
1
T

T∑
t=1

n∑
i=1

Li · Si,t /COPi,t ,

where COPi,t denotes the real performance of chiller i at time t .
It is also significant that our decision should be accurate so that

our final decision making can be reliable. Thus, we also measure
the Accuracy, which indicates the similarity between our predicted
COP and the real COP. Formally,

Accuracy =
1
T

∑
i<n

|COPi,t − ˆCOP i,t |
COPi,t

,

where ˆCOP i,t denotes its predicted value.
Our decision should be conducted before the deadline, and we

also measure the two metrics on time: Total Time and Run Time.
Total Time indicates the total time over which sequencingwasmade,
including the computation time and the mechanical switching time,
to see whether the proposed operation can be done within time
limitations. Run Time indicates the computation time of prediction
models, and thus indicates the power of searching methods, to see
whether all of the prediction tasks should be done. Formally,

Total Time = ts − tc , Run Time = tp − tc ,
where ts denotes the time instant when the sequencing decision
is made; tp denotes the time instant when the predicted COP is
known; tc denotes the time when each experiment starts.

6.1 DPP and T-DPP Model
We compare the prediction results of our Data-driven COP Predic-
tion (DPP-Ada and DPP-SVR) with that of Initial Profiling Model

Figure 8: The accuracy as
a function of day.

Figure 9: The accuracy of
prediction models as a
function of day.

Figure 10: The average
electricity consumption
of days comparing DCS
with PS.

Figure 11: The average
electricity consumption
of days comparing T-DCS
with DCS and PS.

(IPM) and Thermodynamic Model (TDM). Figure 8 shows that,
DPP-Ada outperforms DPP-SVR, Thermodynamic Model, and Ini-
tial Profiling Model by 43.19%, 20.14%, and 30.77% respectively on
average, which illustrates the prediction power of our approach.
That is because, our data-driven approach is developed based on the
runtime data in the real environment and leverages the ensemble
technique to avoid overfitting in non-linear modeling, which can
successfully capture the chiller local and dynamic performance.

In Fig. 9, we compare the Accuracy of Time-constrained DPP
(T-DPP) with that of DPP (we adopt DPP-Ada as our default DPP
approach due to its high accuracy), Initial Profiling Model and
Thermodynamic Model for one year. Though T-DPP significantly
reduces the computation time (will be shown later), we can see that
our T-DPP is almost the same as DPP in terms of prediction accuracy,
which outperforms Initial Profiling Model and Thermodynamic
Model by 32.45% and 21.65%. That is because T-DPP reduces the
computation time merely by selecting important tasks to conduct.
For the selected prediction tasks, it leverages the state-of-the-art
data-driven model, which ensures the accuracy and maintains the
superiority of our data-driven techniques.

6.2 DCS and T-DCS Model
Result on Electricity Consumption. First, Figure 10 compares
our Data-driven Chiller Sequencing (DCS) approach with Prede-
fined Sequencing over days, in terms of Average Electricity Con-
sumption. On average, our DCS outperforms Predefined Sequenc-
ing (PS) by 32.04%. In the day No.25, the improvement increases
to 38.89%. That is because our data-driven method captures the
performance dynamics of chillers and adjusts the cooling load in a
smarter way. The Predefined Sequencing remains stable because
its backup chiller mechanism is triggered frequently due to low
prediction accuracy of COP and thus consistently provides more
cooling power than needed.

Figure 11 shows Average Electricity Consumption as a function
of day. Though our Time-constrained DCS (T-DCS) significantly
reduces the computation time (will be shown later), it still performs
almost the same as DCS, which always outperforms Predefined
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Figure 12: The average
electricity consumption
of cooling demands.

Figure 13: The total time
as a function of day.

Sequencing. That is because not all predictions on all operations
are necessary. Our T-DCS captures the top important operations
and still maintains the superiority of data-driven techniques.

From the cooling demand point of view, Figure 12 shows the
changes in Average Electricity Consumption under different se-
quencing methods. We see that T-DCS is still almost the same as
DCS and always outperforms Predefined Sequencing, which val-
idates the performance of our approach as mentioned above. For
example, T-DCS outperforms Predefined Sequencing by 24.56% at
the average cooling demand of 26205.5 kW. Consistent with our
intuition, as the cooling demand increases, the Average Electricity
Consumption of DCS and T-DCS also gradually increases; while
Predefined Sequencing still remains steadily high due to its limited
prediction performance and backup chiller mechanism.

Result on Time We first compare the total time of the-state-
of-the-art sequencing models. In Fig. 13, we compare the Total
Time of T-DCS with that of Predefined Sequencing and DCS for
one year under time limitation of 2 hours. We can see that T-DCS
and Predefined Sequencing operations can be completed within the
stipulated time except for DCS. It is mainly because DCS needs to
update all the profile tables before making a sequencing decision,
while our T-DCS only updates the most important sparse profile
table, so it saves significant computation time.

To show the potential of saving time, we next compare the Run
Time of T-DCS with that of Predefined Sequencing and DCS for
one year. As we can see in Fig. 14, the average computation time of
our T-DCS model is 1.6 hours, which is an improvement of 10 times
over the DCS model. That is because, T-DCS uses Joint Priority
Ordering to select the most important entries for prediction, unlike
DCS. Though compared with Predefined Sequencing, it seems our
T-DCS takes more time, but in return, we get a more accurate result
as detailed in Section 6.1.

Result on Multiple Buildings In Fig. 15, we compare the Av-
erage Electricity Consumption of T-DCS with that of Predefined
Sequencing and DCS for different buildings. As we can see, though
T-DCS significantly reduces the computation time, the Electricity
Consumption of T-DCS is still quite close to DCS. Compared with
Predefined Sequencing, T-DCS saves 20980 kWh of Electricity Con-
sumption in Pacific Place I, which is an improvement of 31.42%,
respectively. In the remaining two buildings of Pacific Place II and
Pacific Place III, the improvement is 31.63% and 30.98%, respectively.
These results highlight the generality of our approach. When it
comes to multiple buildings, our approach merely shares the similar
training samples using multi-task learning and selects important
entries under similar cooling demands, thus avoiding the noise
when switching between different contexts and models.

Figure 14: The run time as
a function of day.

Figure 15: The average
electricity consumption
in multiple buildings.

7 RELATEDWORK
Energy Intelligent Buildings is a widely studied smart-building
research topic [4–6], especially for the major energy consumer of
HVAC system. Works include controlling the HVAC based on the
spatio-temporal profile of occupancy inside a building [4], cooling a
building in advance of expected increase in occupancy, also known
as pre-cooling [5], and incorporating renewables such as solar
panels and battery storage into the energy mix [6]. Recently, data-
driven techniques are also introduced to capture occupant and
device behavior in this research topic [4, 22–26]. In [4], rich sensor
data is leveraged to predict occupancy and benefit setpoint control
in HVAC system to save energy. Occupant feedback is also further
considered in [22], where a joint model was developed for feedback
and individually comfort learning. These scenarios usually assume
the data to be sufficient for training.

Chiller Sequencing refers to operating the most efficient com-
bination of chillers in a building at (near) real-time to meet the
time-varying cooling demand. Previous studies mainly focused on
developing reliable and robust sequencing according to instanta-
neous building cooling load [15, 27, 28]. These studies mainly set
the chiller cooling capacity as constant (i.e., the same as the rated
cooling capacity) [29]. Considering that the cooling capacity may
vary under different operating conditions (e.g., different chiller
evaporating and condensing temperatures), such approaches may
fail to provide enough cooling energy or lead to extra energy us-
age [30]. As a solution, first, thermal energy storage was leveraged
to improve the COP of multiple chiller plants [31]. Second, physical
and grey box have been used to capture the variation in maximum
cooling capacity given different operating conditions [30, 32]. Gen-
eral model is also proposed calibrated using real data from water
plants [33–35] and centrifugal chillers [36]. However, the actual
performance of these sequence control strategies is subject to the
accuracy of these models because they are general purpose models
and do not capture the practicalities that come with deployments
in different building conditions and time-varying cooling demands.
Worse still, when conducting data-driven sequencing, they also do
not consider the time limitations, e.g., minimum start-stop-start
time of chillers. For the first time, we introduce a novel data-driven
chiller sequencing framework that also captures the need to per-
form chiller sequencing under time constraints. It provides dynamic
cooling performance estimation given a set of possible cooling loads,
other configurations and environmental settings, and conducts se-
quencing under practical time limitations.

Time issue is always an important problem in traditional complex
system research, and now may need to be re-thinked when time-
costly machine learning introduced in decision making [37, 38],
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especially on the edge of the network [39]. An example is SenseNet-
works [40], a recent U.S.-based startup company, which uses mil-
lions of GPS estimates sourced from mobile phones within a city to
predict the place where the people would be interested. In such a
case, the computation time on the phone should be tackled carefully
to meet user requirement. In practice, there are also quite a few
works trying to reduce the data-driven computation time using
distributed machine learning [37, 41, 42]. Admittedly, by increasing
the total computation power, such methods work well in reducing
data-driven computation time. However, they can still suffer from
problems like higher computation cost, higher data transmission
and sharing cost, or even data privacy concerns. There are also
methods re-designing the algorithm for speed up, most of which
are conducted with trade-off between computation time and ac-
curacy [38]. Our idea, in this paper, is based on the observation
that not all operations are valuable for prediction. Focusing on
electricity minimization, we show that it is possible to cut down the
computation time by reducing the number of less-important predic-
tion tasks, rather than sacrificing prediction accuracy or incurring
high computation cost, which sheds some new light on time-aware
machine learning in decision making.

8 DISCUSSION
Accuracy and Energy Consumption Prediction accuracy gener-
ally affects energy consumption in our T-DCS sequencing, because
additional operations, e.g., backup chillers, should be launched to
fix the problem to meet the required cooling demand. Theoretically,
it seems that using backup chiller does not necessarily lead to in-
crease in overall energy consumption, when they are used to satisfy
the exact cooling demand. However, generally, starting additional
backup chillers in practice usually increases the energy consump-
tion under perfect prediction due to the following reasons: 1) Using
additional chillers and pumps in general leads to more energy con-
sumption, because launching and maintaining additional chillers
usually takes more energy than increasing the load on already-
operating chillers when meeting the same cooling load. 2) Backup
chillers are practically run in an over-provisioned manner, e.g., on
the highest load, in order to ensure the required cooling demand
and avoiding further adjustment, instead of meeting exactly the
demand. Such over-provisioning leads to energy waste.

However, there are also other cases when inaccurate prediction
may not lead to inefficient operation. For example, as mentioned in
our paper, some operations may never be used in chiller sequencing
optimization. The prediction accuracy of such unimportant opera-
tions may not affect the final decision. In this paper, we accordingly
propose the dominant graph techniques. It would be an interesting
future work to further investigate on the difference of data-driven
techniques between industrial (focusing on industrial objective)
and traditional (focus on merely accuracy objective) prediction.

Chiller Type In this paper, we focus on merely water-cooled
chillers. As for water-cooled chillers, we first take into account the
inlet and outlet water temperature. We also leverage the dry-bulb
temperature (DBT) which reflects the cooling demand and usage
for performance prediction on the chillers. Future work can include
the feature design for different types of chillers. For example, the
DBT can also be quite related for air-cooled chillers due to their
heat transfer with outdoor air.

SensorMissing The sensing data required by the COP computa-
tion are all accessible in our system. However, such an assumption
may not be true in other systems where some of the required sen-
sors, e.g., mass flow rates sensors, may not be not available. In that
case, cooling load can be estimated indirectly by inverse physical
models based on the power consumption of chiller motors, see [43].

Learning and Prediction Frequency The data samples of all
operations are likely to be sparse, the prediction model should be
updated frequently to adapt to the accumulated samples under
demands, configurations and degradation overtime. To maintain
high performance of our model, in this paper, we update the pa-
rameters each time before a chiller sequencing operation. It would
be interesting future work to investigate the optimal learning and
prediction frequency in data-driven industrial operations.

Multiple-time Chiller Sequencing In this paper, we focused
on single-time chiller sequencing, i.e., without the consideration
and cooperation of other sequencing at different times. Possible
future work can include the consideration of minimum annual run-
time of chillers for multiple-time sequencing, or minimum chiller
utility for each single-time sequencing operation.

9 CONCLUSIONS
Developing energy efficient buildings has long been an important
research topic as facility managers grapple with the problem of
reducing their building’s electricity bills. In this paper, we focused
on one of the core problems in building operation, namely HVAC
chiller sequencing, and made the following contributions.

First, we demonstrated that using chiller COP values from ini-
tial profiles can be detrimental from the point of view of HVAC
electricity consumption. We subsequently stressed the need for
quantifying COP at run-time.

Second, we showed that predicting COP accurately is a chal-
lenging problem, requiring considerable computation time and
hardware resources. To provide a practical solution, we developed
a sequencing framework alongside a time-constrained approach
for COP prediction, which opens the doors for HVAC electricity
consumption reduction while enabling ease of use of the scheme
for real-world deployment.

Finally, we evaluated the performance of our solution by apply-
ing it to BMS data, spanning 4 years, obtained frommultiple chillers
across 3 large commercial buildings in Hong Kong. We showed that
our solution can save over 30% of HVAC electricity consumption
compared to the current mode of chiller operation in the buildings.
We believe that sequencing chillers using a data-driven approach
for COP prediction offers a simple and effective mechanism for
reducing the electricity consumption associated with operating the
HVAC in large commercial buildings.
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APPENDIX

A POSSIBLE BENEFIT OF ACCURATE COP
PREDICTION

Currently, in practice, facility managers often perform COP estima-
tion using initial profile. There are two issues with current COP
estimation schemes: 1) not all loads have been tested in the initial
profiling period, and so COPs at these loads will be missing. A con-
sequence is that these loads will never be used in the sequencing
algorithm; 2) for the COPs with data, a simple averaging approach
is often used. A consequence is that these COPs may be largely
inaccurate and should not be used for making sequencing decisions.

In this section, we demonstrate that there can be a substantial
reduction in chiller electricity consumption when sequencing is
performed with accurate COP prediction.

We now compute the electricity consumption using chiller se-
quencing under the current COP estimation scheme, which is based
on the initial profiles, and compare it against a scheme that es-
timates COP accurately assuming there exists an oracle that can
determine these values. Such an oracle can be obtained by comput-
ing COP using historical data (Section 2.2), and can be regarded as
ground truth. Clearly, this is not a fair comparison, but it shows
the benefit that comes with improving COP prediction.

Since the current chiller sequencing mechanism uses COPs that
are inaccurate, it is possible that the cooling loadQ provided by the
chillers fails to satisfy the actual cooling demand D. In practice,
this is usually addressed by starting backup chillers immediately. 3

A case study is conducted based on Pacific Place II, which con-
tains the most complete chiller data amongst the three buildings. A
recent COP profile for Pacific Place II is shown in Table 2. The COP
matrix is indeed sparse, confirming that each chiller is routinely
operated at only a few distinct loads.

To conduct sequencing in Pacific Place II, COP estimation is
needed for all the entries in the table. In Fig. 16, we start by com-
paring the predicted COP in the current mode of operation (bottom
curve) against the accurate oracle scheme (top curve). The curves
depict chiller 1 (left) and chiller 4 (right) in Pacific Place II. We
see that the current mode of operation often under estimates the
COP. There is a high estimation error of over 35% and has little
correlation with the top curve.
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Figure 16: The accurate COP and estimated COP with
present scheme on different days in Pacific Place II for two
types of chillers (a) Chiller 1; (b) Chiller 4.

In Fig. 17, we compare the electricity consumption between 2012
and 2015 for each of the two chillers. Stacked bars on the right
indicate the current mode of operation while bars on the left show

3It is possible to over-provision the cooling loads by a certain degree. There is a trade-
off between over-provisioning and the fail-over for backup chillers. This problem is
orthogonal to ours and we do not consider it in this paper.
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Figure 17: Electricity consumption of sequencing with AC-
CURATE and CURRENT schemes, from 2012 to 2015.

Table 5: Accuracy of Learning Methods.
Learning Model Learning Method Accuracy

AdaBoost [500 Trees]
Single Task 54.22%

Independent Multi-task 73.15%
Clustered Multi-task 94.03%

what the consumption would have been if COP had been predicted
accurately. We see that the latter could have resulted in lowering
electricity consumption by over 45% on average, with nearly 60%
reduction coming in 2015. These results demonstrate that there is
a significant room to reduce chiller electricity consumption when
more accurate, and robust, COP prediction schemes are used.

B A BRIEF EVALUATION ON PREDICTION
With the clustered training samples, a learning model can then be
trained and predicted. We train our model with the first-three-year
data and predict the COP of the last year with the given feature. We
apply the evaluationmetric ofAccuracy, i.e., 1/T ∑

t<T | |F (Xt ,W )−
COPt | |2, which is the average similarity between the ground truth
and the estimated value in the last year.

To evaluate the performance of CMTL, we compare with Single
Task Learning which learns a single model by pooling together
data from all entries, and Independent Multi-task Learning which
learns each entry independently without sharing any instance or
knowledge. In CMTL, AdaBoost under 500-Trees setting in Python
scikit-learn is adopted as the default learning model due to its
high accuracy, which will be also shown in our experiments next.
The result with different learning methods is shown in Table 5.
CMTL approach significantly outperforms all other methods. That
is because (1) it can better capture the different thermodynamic
models of different entries than a Single Task Learning method, and
(2) it enables the knowledge sharing among entries and reduces the
negative effects due to the little training data in most entries, other
than Independent Multi-task Learning.

In Fig. 18, we show both the measured COP and the estimated
COP with our DPP. The results are shown for one chiller from each
type in Pacific Place II. We see that our approach well matches the
value and the trend of the real COP, with an average RMSE of 0.52.

We also show result with different learningmodels F (·) in Table 6.
We found that the ensemble approach like AdaBoost (1) can better
capture the non-linearity than linear regression, and (2) are less
likely to become over-fitted other than support vector regression on
large datasets, due to the model combination nature of AdaBoost.

C DISCUSSION ON PRIORITY OF FACTORS
Priority under Different Cooling Demands. To order the en-
tries and obtain the priority, we need to decide the four priorities for
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Figure 18: The accurate COP and the estimated COP with
DPP scheme on different days in Pacific Place II for two
types of chillers of (a) Chiller 1; (b) Chiller 4.

Table 6: Learning Models: Computation Time and Accuracy.
Learning Model for Prediction Time per Entry Accuracy

Linear Regression < 1 second 46.22%
Support Vector Regression 1 minute 51.67%

AdaBoost [200 Trees] 3 minutes 82.14%
AdaBoost [400 Trees] 11 minutes 90.14%
AdaBoost [500 Trees] 20 minutes 94.03%

the four factors. An important observation here is that the priority
for the factors changes with different cooling demands. Figure 19
shows that the cooling demand varies considerably from 20058 kW
to 30483 kW over time, mainly due to the meteorological status.
When the cooling demand is high, an entry with a low cooling
load may not meet the cooling demand and thus is not likely to be
selected in the optimal solution, while it may be suitable when the
cooling demand is low because of the low electricity consumption.

Figure 19: The cooling demand as a function of day.

Under different cooling demands, Figure 7 shows minimum elec-
tricity consumption with the historical data in the past four years,
with respect to the number of entries visited in searching proce-
dure using the priority decided by Electricity Consumption and
Cooling Load. We can see from the figure that the entry priority is
changed under different cooling demands. For example, searching
with Electricity Consumption (in the ascending order) under low
cooling demands (bottom 33% of all cases) further reduces 87.50%
of the total search space under high cooling demands (top 33% of
all cases); prioritizing the entries by Cooling Load (in the ascending
order) under low cooling demands reduces 85.71% of the search
space under high cooling demands. The Past Success and Prediction
Accuracy are independent of the cooling demand and thus do not
need to be treated differently under different cooling demands.

Because the priority is influenced by the cooling demand, it
will be decided according to the past priority with similar cooling
demands.

One possible solution is to divide the historical data into several
coarse-grained subsets, e.g., High, Normal and Low cooling demand,

(a) (b)
Figure 20: Under High, Normal, Average and Low cooling de-
mands: minimum electricity consumption under the num-
ber of searched entries, ranked by (a) Electricity Consump-
tion and (b) Cooling Load.

and use the historical data in the corresponding subset to decide
the current priority. However, this can be very biased for entries
close to the boundaries of the subsets. For example, suppose we
define a cooling demand above 27095.8 kW to be of High Cooling
Demand. When the current cooling demand is 27100 kW, it will be
assigned with a similar subset of High Cooling Demand. However, a
past time instant in the Normal Cooling Demand, e.g., with cooling
demand of 27000 kW, can be more similar with the current time
instant of 27100 kW, other than another instant in the High Cooling
Demand, e.g., 30000 kW.

The factors of electricity consumption and cooling load can vary
significantly with the given cooling demand. LetT denote the set of
time instants in the history. The priority is obtained using merely a
subset of time instancesT ′ ∈ T with similar cooling demands. Let
DT denote the cooling demands at past time instances inT .

To tackle bias problem mentioned above, a subset of time in-
stances T ′ can be computed by clustering algorithms such as k
Nearest Neighbors (kNN) [44], i.e., T ′ = kNN (D,DT ,T ). For ex-
ample, when we are clustering for a time instant of cooling demand
27500 kW, the resulting time instances in the cluster will be around
27500 kW.

Then, the priority can be inferred from similar past time instances
t ′ ∈ T ′. Let Pj .rk denote the value of entry j considering the kth
factor at the present time point. Let f jkt ′ denote the rank using the
kth factor in entry j at a past time instant t ′. Then, we have the
priority computation at a past time instant t ′:

f
j
kt ′ = argmin

i
(Pj .rk − r t

′

ki ).

Let j ∈ J denote an entry. Then, for each factor k of entry j,
we turn its value into a score s jk by considering the ranking of the
value. The s jk is computed by:

s
j
k =

1
|T ′ |

∑
t ′∈T ′
(|r tk | − f

j
kt ′)/|r

t
k |.

Note that the scores computed above are normalized and have
values in [0, 1].

D A BRIEF EVALUATION OF JOINT PRIORITY
ORDERING

With the joint priority, we can decide the order of entries to con-
duct prediction and sequencing. Within the deadline of two hours,
different orderings provide different probability to output the opti-
mal solution. Such a probability can be obtained by comparing the
output sequencing and the optimal sequencing for a period of time.
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Table 7: The probability to find optimal solution using dif-
ferent factors within deadline of 2 hours.

Factor Prob. of Finding Optimal
Electricity Consumption 23.4%

Cooling Load 23.6%
Past Success 53.1%

Prediction Accuracy 52.2%
Joint Priority 94.5%

We train our model using data from 2012 to 2014 and evaluate such
a probability with data in the year 2015. Table 7 shows the result.
We clearly see that (1) our joint priority ordering raises the proba-
bility of finding the optimal by about 70% than using just Electricity
Consumption and Cooling Demand; (2) it also raises the probability
by 40% than using Past Success and Prediction Accuracy. That is
because our joint priority ordering captures the dynamic priorities
of different factors, especially under different cooling demands.

In Fig. 21, we compare the average electricity consumption of
sequencing using these single factors. We see that (1) our proposed
joint priority method outperforms the ordering using factors of
Electricity Consumption and Cooling Load by over 20%; (2) it also
outperforms the ordering using factors of Past Success and Predic-
tion Accuracy by about 10%. In the 150th day, the improvements
raise to about 40% and 25%. That is because our joint priority or-
dering benefits the optimal solution searching within the deadline.

Figure 21: The average electricity consumption ordering
with different factors under days.
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